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ABSORBING BOUNDARY CONDITIONS 
FOR THE LINEARIZED EULER EQUATIONS IN 2-D 

DIETMAR KRONER 

ABSTRACT. In this paper we shall derive some approximate absorbing bound- 
ary conditions for the initial value problem for the unsteady linearized Euler 
equations in 2-D. Since we assume that the coefficients of the system are con- 
stant, we can describe the transformation of the system to a decoupled system 
of ODE's and the related absorbing boundary conditions explicitly. We shall 
verify the usefulness of these boundary conditions in some numerical tests for 
the nonlinear Euler equations in 2-D. 

1. INTRODUCTION 

When solving numerically an initial value problem for a hyperbolic system in 
the whole space R2 or R 3, it is necessary to introduce artificial boundaries in 
order to obtain a finite computational domain. Then the question arises which 
kind of boundary conditions one has to impose on these additional boundaries. 
They should guarantee that the solution is not significantly disturbed by reflec- 
tion or other effects which come from these artificial boundaries. Furthermore, 
the solution on the finite computational domain should be a good approxima- 
tion to the solution of the initial value problem in the whole space. 

Using the theory of pseudodifferential operators, Engquist and Majda [2] 
developed the concept of absorbing boundary conditions to satisfy the above 
requirements. They treated the wave equation and first-order symmetric systems 
in 2-D. In more detail, they considered the 3 x 3 system of the linearized shallow 
water problem. 

In this paper we consider general symmetrizable linear systems of first order, 
and in particular we treat the 4 x 4 system of the linearized Euler equations in 
primitive variables: 

(1) ~aU +B1 axU+ B2a U = F, 
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where (see [9]) 

zP i U1 P ? ?' 

U=(uiJ Bi=( U o J 

(2) P 0 PC2 0 U 

fU2 0 p 08 
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B2= ? ? U2 
I 

0 O PC2 U2J 

We consider the system with frozen coefficients. Therefore, instead of the theory 
of pseudodifferential operators, we can use Fourier transformation and some lin- 
ear algebra calculations to derive the local absorbing boundary conditions. Since 
this system is not symmetric, we have to apply a well-known transformation [9] 
to reduce it to a symmetric form. Then, after some matrix multiplication, we 
can write the system as 

(3) OAw = AOw + Eaw + f 

with suitable matrices A and E. We apply the Fourier transformation ^ to 
w with respect to y and t to obtain the following ODE for w: 

(4) OXW'(x' 5s) =M((0,s)w'(x, @5s)+f(x c, ,s), 

where M is defined as in (12) (see [6]). It turns out that there is a matrix 
V(w , s) such that V(w, s)M(w), s) V 1 (a, s) is diagonal. The matrices V 
and M can be calculated explicitly. When solving this ODE, it can be seen 
that the incoming waves are related to the eigenvalues of M(ws, s) with neg- 
ative imaginary part, and the outgoing ones to those with positive imaginary 
part. Now the absorbing boundary conditions are such that all incoming waves 
in x = 0 are cancelled. This means we have to impose the following boundary 
conditions: 

(5) rVw = 0 for x = 0, 

where ir denotes the projection on those coordinates which are related to the 
eigenvalues of M(w, s) with negative imaginary part. Since these boundary 
conditions are global for wii, we have to derive a local approximation of them 
for w . As in [2], a second-order approximation is given by 

(6) 7r(V(O, 1)Ot + a, V(O, l)ay)w = 0 for x = 0. 

The values (co, s) = (0, 1) correspond to waves with normal incidence. There- 
fore, we have to compute the matrices V(0, 1) and 01 V(0, 1). In [2] and [8], 
this has been done for the symmetric 3 x 3 system of the shallow water equa- 
tions. Engquist and Majda [2] have used Taylor expansion arguments and Wa- 
gatha [8] used discrete least squares techniques to get V(0, 1) and O V(0, 1). 
In this paper we consider the nonsymmetric 4 x 4 system of the linearized Euler 
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equations. We shall derive an explicit formula for V(co, s), and therefore we 
can compute V(O, 1) and &1V(O, 1) directly. 

In the next section we shall derive the approximate absorbing boundary con- 
ditions for a general first-order symmetrizable system with constant coefficients. 
Then in ? 3 we shall apply these results to the system of the Euler equations with 
frozen coefficients. Finally, in ?4 we shall present numerical results, where we 
shall use the absorbing boundary conditions as derived in ?3 for the nonlinear 
Euler equations. 

For other concepts of artificial boundary conditions we refer to [1, 4, 3, 5]. 

2. ABSORBING BOUNDARY CONDITIONS FOR FIRST-ORDER 

SYMMETRIZABLE SYSTEMS WITH CONSTANT COEFFICIENTS 

In this section we shall transform a general first-order system with constant 
coefficients to a decoupled system of ordinary differential equations. In this 
form it is then obvious how incoming and outgoing waves are related to the 
eigenvalues of the matrix M (see (4) and (12)). We define the global absorbing 
boundary condition as in [2] and derive a local first- and second-order approx- 
imation thereof. 

Let us consider the system 

(7) &tU+B1&,U+B20yU=F inR2x R+ 

with initial conditions 
2 

(8) U(x, y, 0) = 0 in R 

2. 1. Assumptions. We assume that B1, B2 E Rn x n B1 is regular, and that there 
exists a matrix T E R Xn such that 

(9) T- B1 T = diag(p1, X Pn) T IB2T = symmetric, 

where P1, .. ., Pn are the eigenvalues of the matrix B1 . We suppose that there 

exists a solution U E C (R2 x R+) of (7), (8). 

Now define w := T 1 U and obtain 

(10) 0tw=AI~xw+A20yW+T 1F inmR2 xR+ 
-1-1BT Teif we denote A:- where A1 = -T B1T and A2 =T B2T. Then, 

F := -A7 1A2, and f := -A- 1T F, equation (10) implies 

(11) &xw=A&tw+Eyw +f inR2xR+. 

Furthermore, we shall use the notation 

(12) M(co,s):=isA+icoE. 

Now we shall investigate the relationship between the eigenvalues of AA 1 + w)A2 
and those of M(co, s). Since AA1 + w)A2 is symmetric for all A and w, 
there exists a set of real eigenvalues K1 (a), A), ... , Kn (Ca, IA) and a basis of 
eigenvectors v (co, IA), ... I, vn(co, A) of AA1 + oA2. 
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2.2. Lemma. Assume that there are real numbers A, (C)) ...,n (w)) such that 

(13) Kj (a), Ai (a))) = 1 for j = 1, ... ., n,. for all a). 

The corresponding eigenvectors are denoted by rj(co) := vj(Co, )j(w))). Then we 
have 

(14) M(co, 1)rj(co) = iAj(co)rj(c)). 
Proof. By the definition of Ai we have 

(15) (Aj (w)AI + coA2) rj =r 

and therefore 

A M(co, 1)rj(co) = iA1(A + coE)rj = iA1(A-'1 - wA7 A)r 

= i(l - coA2)rj = i(l + )j(co)AI - Kj)rj = i(Aj(a)A,)rj. E 

The next lemma gives the eigenvectors of M(co, s). 

2.3. Lemma. Let us define aj(co, s) := sAj(!). Then the rj(?1) are also eigen- 
vectors of M(co, s): 

(16) M(co, s)rj(!-) = iaj(co, s)rj(, ). 

Proof. By the definition of M(co, s) we get 

M(w), s)rj( s) = sM(1 -, 1)rj(2O) = iaj(wo, s)rj(9O). El 

In order to find out the incoming and outgoing modes, we want to apply the 
Fourier transformation ̂  with respect to t and y to the solution w of (1 1): 

(17) wlx, o s) := j e-i(st+WY)w(x, y, t) dy dt. 

Here we have extended w to all of R3 by 0. Therefore, we obtain from (1 1) 

(18) Oxw'(x, co, s) = isAwt(x, c, s) + icoEw(x, ca, s) + f 
= M(co, s)w'(x, ca, s) + f. 

This is an ODE for wt. In order to get a representation formula for wt, we 
have to diagonalize the matrix M(co, s), using its eigenvectors rj(1). Thus, 
let 

(19) V-i (c), s) := (r (S) ... n(s)) 

Then we obtain 

(20) V(co, s)M(co, s)V 1(w), s) = diag(ia1(co, s), ...n, ia)(co, s)) 
=D(co, S). 

This means we can reduce (18) to the following decoupled system of ODE's for 
the function z(x, ca, s) := V(cc, s)w(x, ca, s): 

(21) Oxz(x, ca, s) = D(cc, s)z(x, ca, s) +p(x, ca, s), 



ABSORBING BOUNDARY CONDITIONS 157 

where we have used p(x, co, s) V(co, s)f(x, co, s). The solution of (21) 
can be written as 

(22) zj(xco ,s) q1eiaj(wS)Xqj(x, co s) 
where 
(23) ixqj(x, c) s) =e-iaj(wS)xp (x, , s) and 

qj (0, cc, S) = (VW ) cj (O s (), 5) 

In order to see how w1 depends on the eigenvalues aj , we express Wtj in terms 
of zj and apply the inverse Fourier transformation, 

(24) j =s(V Z)j ),V Z =E -Yuk(0s)x ( 
k k 

(25) w(x, y, t)j = A j 
jekt+w Y+ak(wS)X)Jjlq (x, cc, s)dccds 

Now we would like to show that the terms in (25) can be classified as incoming 
or outgoing waves. This relationship is used for the definition of the absorbing 
boundary condition (see [2]). To make this more precise, we have to assume 

2.4. Assumption. The eigenvalues Aj(ac) are continuous at a) = 0 and 

(26) Aj(0) : 0 for j = 1, ..., n. 

2.5. Remark. Consider (7) on R+ x R x R+ . The terms in (25) with uk(T, 1) < 

o are related to incoming waves, and those with ak ( s, 1) > 0 to outgoing waves 
on {x = 0} . The propagation speed of the plane wave 

(27) ei(St+Wy+ak(W I s)X) 

is given by 

(28) 2 2 

Proof. Let elCo be the value of the wave (27) at time to at (xo, yo) with 
Co := St0 + coyo + ak (a), s)x . Then the wave will obtain the same state eiCo at 
a later time t, := to + At in (xl, y 1), where xl and yl are defined as follows: 

(Co -- St I)ak (Co - St1 )cc (29) 2(2co + 2 and y= co2 + 2 

Then the velocity vector is given by 

(30)At c( 12 + ( 2 

Now it is easy to see that sign(sak (co, s)) = sign ak( s, 1) . Therefore, we obtain 
for the velocity vector in the (x, y)-coordinate system: 

(31) cc2 1 (sign(ak(! s l))IsakKI) 
CD2+ 2~k V SWD J 
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It is obvious that this velocity vector corresponds to an incoming wave if 
aj(?s, 1) < 0 and to an outgoing wave if aj( S-, 1) > 0. 

If the boundary conditions are absorbing, then there should be no incoming 
waves in (25) for x = 0. This means Vj 1 qk(x, a), s) should be equal to zero 
for ke {klak(!-, 1) <0} and x= 0, that is, 

(32) qk(Ow a),s)=O fork suchthatak(-, 1) <0. 

This condition can also be written in terms of wt (see (22)): 

(33) (VW)k(, Cs)=O for k such that ak(s, 1) < 0. 

We shall use this property for the definition of the exact absorbing boundary 
condition (see [2]): 

2.6. Definition. Condition (33) will be called the exact absorbing boundary 
condition for the initial value problem (7), (8) in x = 0. 

Since this definition concerns wt, this boundary condition is global. In order 
to apply it in numerical calculations, we have to derive a local version of it. The 
idea is to give a local approximation of (33) in the case where we have ICa)I < a)o 
and I 

I I < ,)O where coa is sufficiently small. This means we consider only 
waves with nearly normal incidence at x = 0 (see (31)). We assume that the 
following condition is valid. 

2.7. Assumption. For all co and s such that Icot < coo and | < coo, with coa 
sufficiently small, we have 

(34) V( - 1) V(O, 1) + No V(O, 1) + ?(N)2. 

Since we have V(co, s) = V(!1, 1), condition (33) implies that for all k 
such that ak(I X 1) < 0, 

(35) Z(V(O, 1) + 'Oa1 V(O, 1) + ?(N)2 )kiwi = 0 for x = 0. 
I 

As a first-order approximation we obtain 

(36) E V(0, 1)kjWj = 0 for x = 0 and for all k such that ik(o) < 0 

and after applying the inverse Fourier transformation S, 

(37) E V(O, l )kiW = 0 for x = 0 and Ak(0) < 0 

or 

(38) 7k(V(O 1)w)= in x = O for all k such that Ak(0)<0? 

Here we have used 7rk to denote the projection on the kth coordinate for which 
we have Ak(0) < 0. In order to get a second-order approximation, we multiply 
(35) by s and consider the first two terms only: 

(39) E(SV(OI 1) + (oal V(OI 1) + ?(WS2 )) kiwi =? 

2 
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Again we apply S, and (39) implies 

(40) Z(V(01 l)kjS(sij) + (01 V(0, l))kjS(w) 'j)) 
j 

or 

(41) Z(V(0 l)kjatWj + 01 V(0 l)kjaywJ) = O in x = 0 and Ak(0) < 0. 

I 

This can also be written in the form 

(42) 7k(V(O, )&tw+&1V(0, )& w)=0 inx=0and)k(0)?0. 

3. ABSORBING BOUNDARY CONDITIONS FOR THE LINEARIZED EULER EQUATIONS 

In this section we shall consider the Euler equation in primitive variables, as 
described in (1) and (2), with frozen coefficients. First, let us verify Assumption 
2.1. For the matrices T and T1 we obtain 

(1 0 p/cv2 p/cv"' 1 0 0 -1/c2 

T- 0 0 1/V2 -1/V T-1 0 1 0 
j0 1 0 0 _ ( 1/V 0 1/cpV') 

0 O pc/VI pc/ VI 0 -1/VI 0 1/cpv", 
It then turns out that 

(U1 0 0 o 

(43) T7'B T - 0U1 0 ( , t o o~~0 u + c o 
o o o Ul -C 

where c := y/Wp7 is the speed of sound. Then, with the notation of ?2, we 

obtain A1 := -T 1BT and A2 := -T 1B2T, 
U2 0 0 0 

(44) A2= 0 U2 c/V/- /v2 
2 0 ~cIv' U2 02 

O C/ V U2 

According to (1 1) we define A := A1 and E -A-2. Now we consider 
1 ~~1 

2'o ecnie 

the eigenvalues and eigenvectors of AA1 + woA2. 

3.1. Lemma. Let co and A E R be given, and a(cw, A) V' +w2. Then 
the eigenvectors vj(a), A) and the eigenvalues Kj(ao, A) of AA1 + oA2 are as 
follows: 

If A>0, then 

(45) V 4 0), V 24 (V 34( a) V4 (fJ,) 
I C0 2e -co 3e a+ 4 a 

(46) K1 =-(AU1 + CWU2) K2 = K1, 

(47) K3 = -(u1 + OU2+ ac) , K4 =-(Au1 + 0U2 -ac). 
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If A < 0, then 

(48) v ( X/2_-A V ( a ) X v4= a+ ) 

0O W ae <c +R A ac - i, 
(49) K1 =-(Aul + U9,2) K2 = K1, 

(50) K3 = -(u1 + OU2- ac), K4 =-(Au1 + OU2+ ac). 

The eigenvectors vj for j = 1, ... , 4 are linearly independent. 

These properties can be easily verified. 

3.2. Remark. We have to distinguish between the cases A > 0 and A < 0 in 
order to be consistent with the labeling of the eigenvalues of AA1 + woA2 if 
co = 0 and A = 1. This can be seen as follows. If we use (45), (46), (47) for 
A > 0 as well as for A < 0 we would get, for instance for K3, 

(51) K3 = -(Au1 + ac) = -(Au1 + )Alc). 

Assume that K3 = 1. Then we know from Lemma 2.2 that the corresponding 
A is an eigenvalue of -iM(O, 1). Formula (51) then implies that 

-&=_ 1 if A>0 
U1 +C 

and 
,___ 1 iiO 

- 
ifA < 0. 

But since -iM(O, 1) = A, the third eigenvalue of -iM(O, 1) should be equal 
to - 1/(u1 + c), independent of the sign of A . 

In order to get the eigenvalues of M(o, 1), we have to solve the equations 
(13). They are quadratic in A. We obtain the following result. 

3.3. Lemma. Let ,B := -ou2-1, o E R, and u1 +c :$ 0. Then the eigenvalues 
of -iM(o, 1) are given by 

u1/3 c2 
3 U2 C2 +U2 C2 

o 1c 
u1-c uI- 

4 u2 -c 2 uu2 C 2 1 

In particular, according to Remark 3.2, we have 
1 1n (52) )23(0) = - 4and )4(0) = __, 

Furthermore, these values satisfy Assumption 2.4. 
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Proof. First of all, it is obvious that the Ai(co) are continuous in c) and that 
they satisfy (52). Therefore, Assumption 2.4 is valid. In Lemma 2.2 we have 
shown that the eigenvalues of -iM(w, 1) are given by the solution of 

K1j(W, )j(w)) = 1, 

where the K1 are defined in (46), (47) and (49), (50), respectively. For A1(o) 
and A2(w), the condition (13) is satisfied. Now let us verify (13) for )3(w) 

and )4(cO). For i = 3, 4 we obtain 

i(o) u-2 2 2 CT2)2 +co 2(u _c2)) 

After some elementary calculations we get 

(53) JAMu + I u2+ 11 = clal = ca. 
Assume first that i = 3 and )3(0) > 0. Then by continuity we also have 

)3(CO)U1 + OU2 + 1 = (>3(CO) - A3(0))U1 + CO2 + 1 + A3(0)U1 

= (A3(t) - A3(0))U1 + COu2 - C)3(0) < 0 

for a) sufficiently small. Therefore, (53) implies 

(54) AA + 0u2 +1 = -ca, 
and therefore (47). Similarly we obtain for i = 3 and A 3(0) < 0 the condition 
(50). The statements concerning i = 4 can be proved in the same way. a 

According to Lemma 2.2, the eigenvectors rj(w) of M(co, 1) are then given 
by rj(co) = vj(o, Aj(Co)). In the following we shall use the notation S= 

sign(Aj). For small ca this is independent of w. We obtain 

(0 (02A 

r - /Vs3cv r= -Vc4o 3 - a3 + IA31 , 4 - 4 - IA41 
a C3 - IA31 J a4 + IA41J 

Let 1j (co) be defined such that I 11rj = 1 r 1k 511 . We obtain 

(56) 1 
( I ( 22u 

I 
O 12 -w(u +c) 

(57) 13 
- ( 53(OUI 

14 
Z _( 

- c 4) U 

(57) 13=-~(a3 + IA31)(Ul + C) 4 (a4 - IA4I)(U1 + C) 

(a3 - IA31)(Ul - C) (a4 + I)41)(Ul - C) 
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This will be proved in Lemma 3.4. Let Tj = (lr1)F1 . Then we define V*(CO, 1) 
as 

(58) V* (a 1) = (rlT , r2T2, r3T3, r4T4). 

3.4. Lemma. Let V(wj, 1) be 

(59) V(0I), 1) = (11, 12 5 13X5 14)X 

Then V' (wo, 1) = V*(a, 1), and V(w), 1) satisfies Assumption 2.7. 
Proof. The differentiability of i(co) with respect to w for small co (see Lemma 
3.3) implies that V satisfies Assumption 2.7. Since V*(wo , 1) = (rITj, r2T2, 
r3T3, r4T4) and V(Cw , 1) = (l1, 12' 13, /4)t, the definition of Ti implies that the 
diagonal elements of V V* are equal to 1. Then it remains to show that 1tr = 0 
for i : j. We shall prove that lr2 = 0 and lr4 = 0. The other cases are 
treated similarly. We have 

13r2 = 2A2s3cU1 - o(a3 + I)3I)(u1 + c) + w(a3 - I23I)(u1 - C) 

= 2A2s3Wu1 - 2w(a3c + j13jU1). 

If )3 > 0, according to (47) with K3 = 1, the term on the far right in (60) is 
equal to 

2A2wu1 - 2w(-1 - wu2) = 0. 

If 3 < 0, according to (50) with K3 = 1, the same term in (60) is equal to 

-2A2acul - 2w)(1 + w)u2) = 0. 

For Itr4 we obtain 

13r4 = -20 2s3s4u1 + (a4 - I141)(a3 + IA31)(U1 + C) 

(61) + (a4 + LX41)(a3 - VA31)(U1 - C) 

= -2wt 2s3s4ul + 2u1(a3a4 - I'3'41) + 2c(a4I)31 - 3IA41) 

First assume that 23 > 0 and A4 > 0. Then we have 

(62) lr4 = -2c 2U1 + 2u1 (a3a4 - 2324) + 2c(a423 - 

Using 
1 =-l-wu2, a3c= -2.3u1, a4C=-f+24u1, 

from the definition of A3 and 24 we obtain 

(63) a3a4 a 22A = l2(fi + f 2A(2A4 + 23) _2.32.4uC 2324c2) 

and 

(64) a4)3 -a32.4 (-f(A4 + A3) + 21 A ). 4=(f(.4 3+232.4u) 
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Therefore, 

(65) 1tr4= -2o2u1 + (2 + - c2) - 2u(,f2 + -c2)) 

~2 4fl 2u1 (2 u 22 c2/?2 2 
(66) - 1 + A U - 2 I + 

-2 C2) (2 C2) c 

=0. 

Now if A3 < 0 and A4> 0, we have 

A = -1 - ju2, a3C = -fl + A 3U1, o4C = -fl + A4u1, 

and therefore 

(67) ~ 3~4 - I''344 = (/l3 - 1 u(A4 +)A3) + 3)4u +%34c2) 

and 

(68) a4 1A31 - a 3IA41 = C(fa(A4 + )3) - 2A3%4U1)i 
C 

Then we can continue as in (65). The other cases are treated similarly. 0 

We are now able to evaluate the first- and second-order approximating local 
boundary conditions (38) and (42). The first-order boundary condition (38) for 
U can be written as 

(69) 7k (V(0, 1) T 1 U) = 0 for x = 0 andik(?) < ?. 

From (59) we obtain for V(0, 1)T 

(1 0 0 -l/c2 

(70) V(0, 1)Ti1 = 
0 

-I ? 
0 

0 54Vr 0 - V524/pC 

Therefore, (38) implies 

3.5. First-order absorbing boundary condition in x = 0: 

if Al < 0 P - 
1 

= 0 

C2 

if A2<0: U2=1 0 

(71) if A3 <0: UI + 
1 

P=? 
PC 

if)A4 ? 0: U1 - -p = 0. 

For calculating the second-order approximating local absorbing boundary 

condition (42), we need 0 V(O, 1) and therefore A From Lemma 3.3 
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we obtain 

(72) OCOA I (?) =-U2, aw,2 (0) =-U2, 
U2 U 

(73) a(O) 3 = +1' = 

uC? 
C 

U1 (74) awA4 (?) =- i 

Using acaj(O) = sign(Aj(O))O9)A1(O), we get 

0 0 ~ ~0 0 
(75) a V(O, 1) s 2s3O(,3( )(u + c) (0 - c) 

? - vl2-uS4 0 2s4O(,,4(o)(U1 - C) 

Now the matrices V(O, 1) and a, V(O, 1) are available, and we can compute 
the approximating absorbing boundary conditions as defined in (42). Since 
w = T U, we get 

(76) 7rk(V(O, 1)T MU + 1 V(0, 1)T ayU) = O in x = O and Ak(O) < ? 

For 01 V(O, 1) T_ 1 we obtain 

(0 0 0 0 

(77) a0V(O, 1)T1 = - v1u1 -V'u s/u2 V -sV2/P 
s V42U2 -S4 V/U1 -V2s4U2/Pc 

Now (42) implies the following 

3.6. Second-order absorbing boundary conditions in x = 0: 

if Al < : 9tP - -,Ox= 0 

78) if 2 < ? &tU2 + U1oyU1 + U29yU2 + &ayP = 0, 
( ) if 23 < ?: atUl + PIAPs + U2(9yUl lay 2 + 0PC =0 

if 4 ?0: -&9tUl + &p9-2 + + E1yP = 0. 

4. NUMERICAL RESULTS 

The boundary conditions 3.5, 3.6 are implemented in the following way. At 
each point we have to decide if Ai is nonnegative for j = 1, ..., 4. Then 
the corresponding boundary conditions are discretized explicitly in time and 
with upwind differences in space. For those values which are not defined by the 
boundary conditions (78), we use an extrapolation formula of second order to 
extend them up to the boundary. 

We have used these local absorbing boundary conditions for U in some nu- 
merical test problems. In our example we consider the nonlinear Euler equations 
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0.5 - 

0.0 0.5 1.0 

FIGURE 1 

as described in (1) and (2) with respect to piecewise constant initial values. Out- 
sideofagivencircle C weprescribe U= (p, u1, u2,p) = (1.0, 0.0, 0.0, 0.4), 
and inside of it U = (p, u1, u2, p) = (4.0, 0.0, 0.0, 1.6). The solution will 
consist of a rotationally symmetric shock wave running outside, a contact dis- 
continuity following the shock wave, and a rarefaction wave going to the center. 
On the left vertical part of the boundary we impose the absorbing boundary 
conditions 3.5 and 3.6, respectively. For the discretization of the Euler equa- 
tion we have used the Harten-Lax-v.Leer scheme (see [7]). The calculations are 
performed on a 100 x 100 grid. 

The level lines of the density have been plotted in Figure 1 after 30 time 
steps. Up to this time, the shock wave has not reached the boundaries. Then, 
in a second experiment we have shifted the center of the circle C to the left 
such that the shock front will reach the left boundary within 30 time steps. On 
the boundary x = 0 we now imposed the local absorbing boundary conditions 
3.6. The level lines of the density are plotted in Figure 2. It can be seen that the 
solution crosses the boundary nearly without any reflections. For comparison, 
we have plotted the same situation in Figure 3 but now with reflecting boundary 
conditions on x = 0. 

Since the absorbing boundary conditions 3.5 and 3.6 are only approximations, 
there will be small reflected waves. In order to measure the reflected part, 
we subtract the shifted solution from the original one and calculate the L - 

norm of the difference. Let the upper indices 1 and 2 refer to the differences 
corresponding to the absorbing boundary conditions of first and second order, 
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respectively. Then we obtain 

liP llL2 = 0.134, lIP llL2 = 0.003, 

||U1lL2 = 0.06, || U 11L2 = 0.0008, 

llU2llL2 = 0.007, llU2llL2 = 0.0007, 
1 2 

liP llL2 = 0.03, lIP llL2 = 0.0007. 
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